

Inferelator 3.0

[image: PyPI version]
 [https://badge.fury.io/py/inferelator][image: CI]
 [https://github.com/flatironinstitute/inferelator/actions/workflows/python-package.yml/][image: codecov]
 [https://codecov.io/gh/flatironinstitute/inferelator][image: Documentation Status]
 [https://inferelator.readthedocs.io/en/latest/?badge=latest]The Inferelator 3.0 [https://doi.org/10.1093/bioinformatics/btac117] is a package for gene regulatory network inference that is based on regularized regression.
It is an update of the Inferelator 2.0 [https://ieeexplore.ieee.org/document/5334018], which is an update of the original Inferelator [https://doi.org/10.1186/gb-2006-7-5-r36]
It is maintained by the Bonneau lab in the Systems Biology group of the Flatiron Institute [https://www.simonsfoundation.org/flatiron/center-for-computational-biology/systems-biology/].

This repository is the actively developed inferelator package for python. It works for both single-cell and bulk transcriptome experiments.
Includes AMuSR [https://github.com/simonsfoundation/multitask_inferelator/tree/AMuSR/inferelator_ng]
(Castro et al 2019) [https://doi.org/10.1371/journal.pcbi.1006591],
elements of InfereCLaDR [https://github.com/simonsfoundation/inferelator_ng/tree/InfereCLaDR]
(Tchourine et al 2018) [https://doi.org/10.1016/j.celrep.2018.03.048],
and single-cell workflows (Jackson et al 2020) [https://elifesciences.org/articles/51254].

We recommend installing this package from PyPi using python -m pip install inferelator.
If running locally, also install joblib by python -m pip install joblib for parallelization.
If running on a cluster, also install dask by python -m pip install dask[complete] dask_jobqueue for dask-based parallelization.

This package can also be installed from the github repository.
Clone the inferelator GitHub [https://github.com/flatironinstitute/inferelator] repository and run python setup.py install.

Documentation is available at https://inferelator.readthedocs.io [https://inferelator.readthedocs.io/en/latest/], and
basic workflows for **Bacillus subtilis** and **Saccharomyces cerevisiae** are included with a tutorial.

All current example data and scripts are available from Zenodo

[image: DOI]
 [https://doi.org/10.5281/zenodo.3355524].

Workflows

Workflow Constructor

Construct inferelator workflows from preprocessing, postprocessing, and regression modules

	
inferelator.workflow.inferelator_workflow(regression=<class 'inferelator.regression.base_regression._RegressionWorkflowMixin'>, workflow=<class 'inferelator.workflows.workflow_base.WorkflowBase'>)

	Create and instantiate an Inferelator workflow.

	Parameters

	
	regression (str, RegressionWorkflow subclass) – A class object which implements the
run_regression and run_bootstrap methods for a specific
regression strategy. This can be provided as a string.

”base” loads a non-functional regression stub.

”bbsr” loads Bayesian Best Subset Regression.

”elasticnet” loads Elastic Net Regression.

”sklearn” loads scikit-learn Regression.

”stars” loads the StARS stability Regression.

”amusr” loads AMuSR Regression. This requires multitask workflow.

Defaults to “base”.

	workflow (str, WorkflowBase subclass) – A class object which implements the necessary
data loading and preprocessing to create design &
response data for the regression strategy, and then the
postprocessing to turn regression betas into a network.
This can be provided as a string.

”base” loads a non-functional workflow stub.

”tfa” loads the TFA-based workflow.

”single-cell” loads the Single Cell TFA-based workflow.

”multitask” loads the multitask workflow.

Defaults to “base”.

	Returns

	This returns an initialized object which has both the
regression workflow and the preprocessing/postprocessing workflow.
This object can then have settings assigned to it, and can be run
with .run()

	Return type

	Workflow instance

Common Workflow

	
class inferelator.workflow.WorkflowBaseLoader

	WorkflowBaseLoader is the class to load raw data.
It does no processing; it only takes data from files.

	
append_to_path(var_name, to_append)

	Add a string to an existing path variable

	Parameters

	
	var_name (str) – The name of the path variable (input_dir or output_dir)

	to_append (str) – The path to join to the end of the existing path variable

	
print_file_loading_arguments(file_name)

	Print the settings that will be used to load a given file name.

	Parameters

	file_name (str) – The name of the variable containing the file name
(from set_file_properties)

	
set_expression_file(tsv=None, hdf5=None, h5ad=None, tenx_path=None, mtx=None, mtx_barcode=None, mtx_feature=None, h5_layer=None)

	Set the type of expression data file.
Current loaders include TSV, hdf5, h5ad (AnnData),
and MTX sparse files.
Only one of these loaders can be used; passing arguments
for multiple loaders will raise a ValueError.

	Parameters

	
	tsv (str, optional) – A path to a TSV (or tsv.gz) file which can be
loaded by pandas.read_csv()

	hdf5 (str, optional) – A path to a hdf5 file which can be loaded by
pandas.HDFStore

	h5ad (str, optional) – A path to an AnnData hd5 file

	tenx_path (Path, optional) – A path to the folder containing the
10x mtx, barcode, and feature files

	mtx (str, optional) – A path to an mtx file

	mtx_barcode (str, optional) – A path to a list of observation
names (i.e. barcodes, etc) for the mtx file

	mtx_feature (str, optional) – A path to a list of gene names
for the mtx file

	h5_layer (str, optional) – The layer (in an AnnData h5) or the
store key (in an hdf5) file to use.
Defaults to using the first key.

	
set_file_loading_arguments(file_name, **kwargs)

	Update the settings for a given file name. By default we assume all
files, except expression data, can be read in as TSV files. Any
arguments provided here will be passed to pandas.read_csv() for the
file name provided.

set_file_loading_arguments(‘expression_matrix_file’, sep=”,”)
will read the expression_matrix_file as a CSV.

	Parameters

	
	file_name (str) – The name of the variable containing the file name
(from set_file_properties)

	kwargs – Arguments to be passed to pandas.read_csv()

	
set_file_paths(input_dir=None, output_dir=None, expression_matrix_file=None, tf_names_file=None, meta_data_file=None, priors_file=None, gold_standard_file=None, gene_metadata_file=None, gene_names_file=None)

	Set the file paths necessary for the inferelator to run

	Parameters

	
	input_dir (str) – A path containing the input files

	output_dir (str, optional) – A path to put the output files

	expression_matrix_file (str) – Path to the expression data
If set here, this expression file will be assumed to be a TSV file.
Use set_expression_file() for other file types

	meta_data_file (str, optional) – Path to the meta data TSV file

	tf_names_file (str) – Path to a list of regulator names to include
in the model

	priors_file (str) – Path to a prior data file TSV file
[Genes x Regulators]

	gold_standard_file (str) – Path to a gold standard data TSV
file [Genes x Regulators]

	gene_metadata_file (str, optional) – Path to a genes annotation file

	gene_names_file (str, optional) – Path to a list of genes to include in
the model (optional)

	
set_file_properties(extract_metadata_from_expression_matrix=None, expression_matrix_metadata=None, expression_matrix_columns_are_genes=None, gene_list_index=None, metadata_handler=None)

	Set properties associated with the input data files

	Parameters

	
	extract_metadata_from_expression_matrix (bool, optional) – A boolean flag that
should be set to True if there is non-expression data in the
expression matrix. If True, expression_matrix_metadata must
be provided.
Defaults to False.

	expression_matrix_metadata (list(str), optional) – A list of columns which, if
provided, will be removed from the expression matrix file and
kept as metadata.
Defaults to None.

	expression_matrix_columns_are_genes (bool, optional) – A boolean flag indicating
the orientation of the expression matrix.
False reads expression matrix [genes (rows) x samples (columns)].
True reads expression matrix [samples (rows) x genes (columns)].
Defaults to False.

	gene_list_index (str, optional) – The column name in the gene metadata file
which corresponds to the gene labels in the expression and prior
data files. Must be provided if gene_metadata_file was provided
to set_file_paths().
Defaults to None.

	metadata_handler (str) – A string which identifies the specific
metadata parsing method to use. Options include
“branching” or “nonbranching”. Defaults to “branching”.

	
set_network_data_flags(use_no_prior=None, use_no_gold_standard=None)

	Set flags to skip using existing network data. Note that these
flags will be ignored if network data is provided

	Parameters

	
	use_no_prior (bool) – Flag to indicate the inferelator should be run
without existing prior data. Will create a mock prior with no
information. Highly inadvisable. Defaults to False

	use_no_gold_standard (bool) – Flag to indicate the inferelator should
be run without existing gold standard data. Will create a mock
gold standard with no information. Highly inadvisable.
Defaults to False

	
class inferelator.workflow.WorkflowBase

	WorkflowBase handles crossvalidation, shuffling, and validating priors and gold standards

	
run()

	Execute workflow, after all configuration.

	
set_crossvalidation_parameters(split_gold_standard_for_crossvalidation=None, cv_split_ratio=None, cv_split_axis=None)

	Set parameters for crossvalidation.

	Parameters

	
	split_gold_standard_for_crossvalidation (bool) – Boolean flag indicating if the gold standard should be
split. Must be set to True for other crossvalidation settings to have an effect. Defaults to False.

	cv_split_ratio (float) – The proportion of the gold standard which should be retained for scoring. The rest will
be used to train the model. Must be set betweeen 0 and 1.

	cv_split_axis (int, None) – How to split the gold standard. If 0, split genes; this will take all the data for certain
genes and keep it in the gold standard. These genes will be removed from the prior. If 1, split regulators;
this will take all the data for certain regulators and keep it in the gold standard. These regulators will
be removed from the prior. Splitting regulators is inadvisable. If None, the prior will be replaced with a
downsampled gold standard. Setting this to 0 is generally the best choice.
Defaults to None.

	
static set_output_file_names(network_file_name='', confidence_file_name='', nonzero_coefficient_file_name='', pdf_curve_file_name='', curve_data_file_name='')

	Set output file names. File names that end in ‘.gz’ will be gzipped.

	Parameters

	
	network_file_name (str) – Long-format network TSV file with TF->Gene edge information.
Default is “network.tsv”.

	confidence_file_name (str) – Genes x TFs TSV with confidence scores for each edge.
Default is “combined_confidences.tsv”

	nonzero_coefficient_file_name (str) – Genes x TFs TSV with the number of non-zero model coefficients for each
edge. Default is None (this file is not produced).

	pdf_curve_file_name (str) – PDF file with plotted curve(s). Default is “combined_metrics.pdf”.

	curve_data_file_name (str) – TSV file with the data used to plot curves.
Default is None (this file is not produced).

	
set_postprocessing_parameters(gold_standard_filter_method=None, metric=None)

	Set parameters for the postprocessing engine

	Parameters

	
	gold_standard_filter_method (str) – A flag that determines if the gold standard should be shrunk to the
size of the produced model. “overlap” will only score on overlap between the gold standard and the
inferred gene regulatory network. “keep_all_gold_standard” will score on the entire gold standard.
Defaults to “keep_all_gold_standard”.

	metric (str) – The model metric to use for scoring. Supports “precision-recall”, “mcc”, “f1”, and “combined”
Defaults to “combined”.

	
set_run_parameters(num_bootstraps=None, random_seed=None, use_mkl=None, use_numba=None)

	Set parameters used during runtime

	Parameters

	
	num_bootstraps (int) – The number of bootstraps to run.
Defaults to 2.

	random_seed (int) – The random number seed to use.
Defaults to 42.

	use_mkl (bool) – A flag to indicate if the intel MKL library
should be used for matrix multiplication, defaults to False

	use_numba (bool) – A flag to indicate if numba should be used
to accelerate the calculations. Requires numba to be installed if set.
Currently only accelerates AMuSR regression, defaults to True

	
set_shuffle_parameters(shuffle_prior_axis=None, make_data_noise=None, add_prior_noise=None)

	Set parameters for shuffling labels on a prior axis. This is useful to establish a baseline.

	Parameters

	
	shuffle_prior_axis (int, None) – The axis for shuffling prior labels. 0 shuffles gene labels. 1 shuffles regulator
labels. None means labels will not be shuffled. Defaults to None.

	make_data_noise (bool, None) – Replace loaded data with simulated data that is entirely random. This retains type;
integer data remains integer, float remains float. Gene distributions should be centered around the
mean of gene expression in the original data, but is otherwise random.

	add_prior_noise (numeric, None) – Add random edges to the prior data. This is a numeric value between 0 and 1 such that 0
adds no edges, 1 sets every edge in the prior to True, 0.1 sets 10% of the edges in the prior to True, and
so on. Note that this will binarize the prior if it is not already binary.

Transcription Factor Activity (TFA) Workflow

Implementation for the Transcription Factor Activity (TFA)
based Inferelator workflow.

This workflow also has a design driver which will incorporate
timecourse data.

This is the standard workflow for most applications.

	
class inferelator.tfa_workflow.TFAWorkFlow

	Bases: inferelator.workflows.workflow_base.WorkflowBase

TFAWorkFlow runs the timecourse driver and the TFA driver
prior to regression.

	
run()

	Execute workflow, after all configuration.

	
set_design_settings(timecourse_response_driver=None, delTmin=None, delTmax=None, tau=None)

	Set the parameters used in the timecourse design-response driver.

	Parameters

	
	timecourse_response_driver (bool) – A flag to indicate that the
timecourse calculations should be performed.
If set False, no other timecourse settings will have any effect.
Defaults to True.

	delTmin (int, float) – The minimum allowed time difference between timepoints
to model as a time series. Provide in the
same units as the metadata time column (usually minutes).
Defaults to 0.

	delTmax (int, float) – The maximum allowed time difference between timepoints
to model as a time series. Provide in the
same units as the metadata time column (usually minutes).
Defaults to 120.

	tau (int, float) – The tau parameter. Provide in the same units as the
metadata time column (usually minutes).
Defaults to 45.

	
set_tfa(tfa_driver=None, tfa_output_file=None, tfa_input_file=None, tfa_input_file_type=None)

	Perform or skip the TFA calculations; by default the design matrix will
be transcription factor activity. If this is called with
tfa_driver = False, the design matrix will be transcription factor
expression. It is not necessary to call this function unless setting
tfa_driver = False.

	Parameters

	
	tfa_driver (bool) – A flag to indicate that the TFA calculations should
be performed.
Defaults to True

	tfa_output_file (str, optional) – A path to a TSV file which will be created
with the calculated TFAs. Note that this file may contain TF
expression if the TFA cannot be calculated for that TF.
If None, no output file will be produced.
Defaults to None

	tfa_input_file – A path to a TFA file which will be loaded
and used in place of activity calculations. If set, all TFA-related
settings will be irrelevant. TSV file MUST be Samples X TFA.
If None, the inferelator will calculate TFA
Defaults to None

	tfa_input_file_type – A string which identifies file type.
Accepts “tsv” and “h5ad”.
If None, assume the file is a TSV
Defaults to None

Single-Cell Workflow

Run Single Cell Network Inference. This is the same network inference with some extra preprocessing functionality.

	
class inferelator.single_cell_workflow.SingleCellWorkflow

	Bases: inferelator.workflows.tfa_workflow.TFAWorkFlow

SingleCellWorkflow has some additional preprocessing prior to calculating TFA and running regression

	
add_preprocess_step(fun, **kwargs)

	Add a preprocessing step after count filtering but before calculating TFA or regression.

	Parameters

	
	fun (str, preprocessing.single_cell function) – Preprocessing function. Can be provided as a string or as a function in preprocessing.single_cell.

”log10” will take the log10 of pseudocounts

”ln” will take the natural log of pseudocounts

”log2” will take the log2 of pseudocounts

”fft” will do the Freeman-Tukey transform

	kwargs – Additional arguments to the preprocessing function

	
run()

	Execute workflow, after all configuration.

	
set_count_minimum(count_minimum=None)

	Set the minimum count value for each gene (averaged over all samples)

	Parameters

	count_minimum (float) – The mean expression value which is required to retain a gene for modeling. Data that
has already been normalized should probably be filtered during normalization, not now.
Defaults to None (disabled).

Multi-Task AMuSR Workflow

Run Multitask Network Inference with TFA-AMuSR.

	
class inferelator.amusr_workflow.MultitaskLearningWorkflow

	Bases: inferelator.workflows.single_cell_workflow.SingleCellWorkflow

Class that implements multitask learning. Handles loading and
validation of multiple data packages

	
create_task(task_name=None, input_dir=None, expression_matrix_file=None, meta_data_file=None, tf_names_file=None, priors_file=None, gold_standard_file=None, gene_names_file=None, gene_metadata_file=None, workflow_type='single-cell', **kwargs)

	Create a task object and set any arguments to this function as attributes of that task object. TaskData objects
are stored internally in _task_objects.

	Parameters

	
	task_name (str) – A descriptive name for this task

	input_dir (str) – A path containing the input files

	expression_matrix_file (str) – Path to the expression data

	meta_data_file (str, optional) – Path to the meta data

	tf_names_file (str) – Path to a list of regulator names to include in the model

	priors_file (str) – Path to a prior data file

	gene_metadata_file (str, optional) – Path to a genes annotation file

	gene_names_file (str, optional) – Path to a list of genes to include in the model (optional)

	workflow_type (str, inferelator.BaseWorkflow subclass) – The type of workflow for data preprocessing.
“tfa” uses the TFA workflow,
“single-cell” uses the Single-Cell TFA workflow

	kwargs – Any additional arguments are assigned to the task object.

	Returns

	Returns a task reference which can be additionally modified by calling any valid Workflow function to
set task parameters

	Return type

	TaskData instance

	
set_task_filters(regulator_expression_filter=None, target_expression_filter=None)

	Set the filtering criteria for regulators and targets between tasks

	Parameters

	
	regulator_expression_filter (str, optional) – “union” includes regulators which are present in any task,
“intersection” includes regulators which are present in all tasks

	target_expression_filter (str, optional) – “union” includes targets which are present in any task,
“intersection” includes targets which are present in all tasks

Cross-Validation Workflow Wrapper

This is a manager which will take an Inferelator workflow and repeatedly run it with different parameters.
This is implemented using deep copies; it is therefore memory-intensive.

	
class inferelator.crossvalidation_workflow.CrossValidationManager(workflow_object=None)

	Bases: object

Crossvalidate an Inferelator Workflow

	
__init__(workflow_object=None)

	Create a new CrossValidationManager instance and give it a workflow

	Parameters

	workflow_object (Workflow) – The workflow to run crossvalidation with

	
add_gridsearch_parameter(param_name, param_vector)

	Set a parameter to search through by exhaustive grid search

	Parameters

	
	param_name (str) – The workflow parameter to change for each run

	param_vector (iterable) – An iterable with values to use for the parameter

	
add_grouping_dropin(metadata_column_name, group_size=None, seed=42)

	Run modeling on each group (defined by a metadata column) individually.

	Parameters

	
	metadata_column_name (str) – Metadata column which has different values for each group

	group_size (int, None) – The maximum size of each group. Groups will be downsampled to the same size if this is not
set to None. Default is None.

	seed (int) – The random seed to use for the group downsampling
(this is not the same as the seed passed to the workflow)

	
add_grouping_dropout(metadata_column_name, group_size=None, seed=42)

	Drop each group (defined by a metadata column) and run modeling on all of the other groups.

	Parameters

	
	metadata_column_name (str) – Metadata column which has different values for each group

	group_size (int, None) – The maximum size of each group. Groups will be downsampled to the same size if this is not
set to None. Default is None.

	seed (int) – The random seed to use for the group downsampling
(this is not the same as the seed passed to the workflow)

	
add_size_subsampling(size_vector, stratified_column_name=None, with_replacement=False, seed=42, size_sample_only=None)

	Resample expression data to a ratio of the original data.

	Parameters

	
	size_vector (iterable(floats)) – An iterable with numeric ratios for downsampling. These values must be between 0 and 1.

	stratified_column_name (str, None) – Set this to stratify sampling (to maintain group size ratios). If None, do not
maintain group size ratios. Default is None.

	with_replacement (bool) – Do sampling with or without replacement. Defaults to False

	seed – The random seed to use when selecting observations
(this is not the same as the seed passed to the workflow)

	seed – int

Model Selection & Regression Modules

BBSR

	
class inferelator.regression.bbsr_python.BBSRRegressionWorkflowMixin

	Bayesian Best Subset Regression (BBSR)

https://doi.org/10.15252/msb.20156236

	
set_regression_parameters(prior_weight=None, no_prior_weight=None, bsr_feature_num=None, clr_only=None, ordinary_least_squares_only=None)

	Set regression parameters for BBSR

	Parameters

	
	prior_weight (float) – Weight for edges that are present in
the prior network. Defaults to 1.

	no_prior_weight (float) – Weight for edges that are not present
in the prior network. Defaults to 1.

	bsr_feature_num (int) – The number of features to include in
best subset regression. Defaults to 10.

	clr_only (bool) – Only use Context Likelihood of Relatedness to
select features for BSR, not prior edges. Defaults to False.

	ordinary_least_squares_only (bool) – Use OLS instead of Bayesian
regression, for testing. Defaults to False.

AMuSR

	
class inferelator.regression.amusr_regression.AMUSRRegressionWorkflowMixin

	Multi-Task AMuSR regression

https://doi.org/10.1371/journal.pcbi.1006591

	
set_regression_parameters(prior_weight=None, lambda_Bs=None, lambda_Ss=None, heuristic_Cs=None, tol=None, relative_tol=None)

	Set regression parameters for AmUSR.

	Parameters

	
	prior_weight (numeric) – Weight for edges that are present in the prior
network. Non-prior edges have a weight of 1. Set this to 1 to
weight prior and non-prior edges equally, Defaults to 1.

	lambda_Bs (list(floats) or np.ndarray(floats)) – Lambda_B values to search during model selection.
If not set, lambda_B will be chosen using the heuristic
lambda_b = c * sqrt(d log p / n) from Castro 2019
Defaults to not set. Must be provided if lambda_S is set.

	lambda_Ss (list(floats) or np.ndarray(floats)) – Lambda_S values to search during model selection.
If not set, lambda_S will be chosen using the heuristic
0.5 < lambda_s/lambda_b < 1 from Castro 2019
Defaults to not set.

	heuristic_Cs (list(floats) or np.ndarray(floats)) – c values to search during model selection.
Values of c to calculate lambda_b = c * sqrt(d log p / n),
Defaults to np.logspace(np.log10(0.01), np.log10(10), 20)[::-1].
Does not have an effect if lambda_B is provided.

	tol (float) – Convergence tolerance for amusr regression

	relative_tol (float) – Relative convergence tolerance for
amusr regression

Scikit-Learn

	
class inferelator.regression.sklearn_regression.SKLearnWorkflowMixin(*args, **kwargs)

	Use any scikit-learn regression module

	
set_regression_parameters(model=None, add_random_state=None, **kwargs)

	Set parameters to use a sklearn model for regression

	Parameters

	
	model (BaseEstimator subclass) – A scikit-learn model class

	add_random_state (bool) – Flag to include workflow random seed as “random_state” in the model

	kwargs (any) – Any arguments which should be passed to the scikit-learn model class instantiation

Elastic-Net

	
class inferelator.regression.elasticnet_python.ElasticNetWorkflowMixin(*args, **kwargs)

	Set default parameters to run scikit-learn ElasticNetCV

	
set_regression_parameters(model=None, add_random_state=None, **kwargs)

	Set parameters to use a sklearn model for regression

	Parameters

	
	model (BaseEstimator subclass) – A scikit-learn model class

	add_random_state (bool) – Flag to include workflow random seed as “random_state” in the model

	kwargs (any) – Any arguments which should be passed to the scikit-learn model class instantiation

StARS-Lasso

	
class inferelator.regression.stability_selection.StARSWorkflowMixin(*args, **kwargs)

	Stability Approach to Regularization Selection (StARS)-LASSO.
StARS-Ridge is implemented on an experimental basis.

https://arxiv.org/abs/1006.3316
https://doi.org/10.1016/j.immuni.2019.06.001

	
set_regression_parameters(alphas=None, num_subsamples=None, method=None, **kwargs)

	Set regression parameters for StARS-LASSO

	Parameters

	
	alphas (list(float)) – A list of alpha (L1 term) values to search.
Defaults to logspace between 0. and 10.

	num_subsamples (int) – The number of groups to break data
into. Defaults to 20.

	method (str) – The model to use. Can choose from ‘lasso’
or ‘ridge’. Defaults to ‘lasso’.
If ‘ridge’ is set, ridge_threshold should also be passed.
Any value below ridge_threshold will be set to 0.

	kwargs (any) – Any additional arguments will be passed to the
LASSO or Ridge scikit-learn object at instantiation

Result Objects

Network File

network_file_name = "network.tsv"

The network.tsv is a long-format TSV file containing Regulator -> Target edges.
This TSV file is sorted by the confidence score of the regulator (TF) -> target (gene) edge, from largest to smallest.:

target regulator combined_confidences gold_standard precision recall MCC F1
BSU24750 BSU04730 0.999986 1 1 0.00165 0.04057 0.003295
BSU13020 BSU04730 0.999984
BSU09690 BSU04730 0.99998
BSU06590 BSU04730 0.999978
BSU18510 BSU04730 0.999976
BSU25800 BSU25810 0.999975

If the gene and TF are in the gold standard, the gold standard for this edge is reported (1 if present, 0 if not present),
and the model performance is calculated. The Precision, Recall, MCC, and F1 scores are calculated assuming that all edges
above a row (with greater confidence scores) are predicted TF -> Gene interactions, and all values below are predicted to
not be TF -> Gene interactions. Rows which do not contain any gold standard (either 1 or 0) indicate that the regulator or
the target are not in the Genes x TFs gold standard matrix. These rows will not be scored.

Also included is a column indicating if the network edge was in the prior (1, 0, or not present if the gene or TF were not
present in the prior network).
The beta.sign.sum column is the number of times the model coefficient occurred and the sign
(positive model coefficients will be reported as a positive value, and negative model coefficients will be reported as a
negative value).
The var.exp.median column reports the median amount of variance in the gene explained by the regulator.

InferelatorResults

	
class inferelator.postprocessing.InferelatorResults(network_data, betas_stack, combined_confidences, metric_object, betas_sign=None, betas=None)

	For network analysis, the results produced in the output_dir are sufficient.
Model development and comparisons may require to values that are not written to files.
An InferelatorResults object is returned by the workflow.run() methods
(A list of InferelatorResults objects is returned by the CrossValidationManager.run() method).

This object allows access to most of the internal values created by the inferelator.

	
name

	Results name, usually set to task name.
Defaults to None.

	
network

	Network dataframe, usually written to network.tsv.gz

	
betas_sign

	The aggregate sign of non-zero betas.
This is a dataframe which is Genes x TFs

	
betas_stack

	Count of non-zero betas.
This is a dataframe which is Genes x TFs

	
combined_confidences

	Confidence scores for tf-gene network edges.
This is a dataframe which is Genes x TFs

	
tasks

	Task result objects if there were multiple tasks. None if there were not.
This is a dict, keyed by task ID

Inferelator Tutorial

Input Data

All data provided to the inferelator should be in TSV format.

The inferelator package requires two data structures to function:

	A gene expression matrix which contains some expression data for G genes and N samples.
Any unit is generally acceptable provided all samples are the same unit and are reasonably normalized together.

	A text list of K genes which should be modeled as regulators (like Transcription Factors)

The performance with no additional data is extremely poor, however.
In addition to the two required data elements, there is other data which can be provided.

The most important of these additional elements is some known knowledge about regulatory connections.

	A prior knowledge connectivity matrix [G x K] which links the genes G to the regulators K.
This matrix should have a zero where a gene is not regulated by a regulator.
It should have a non-zero value where a gene is known to be regulated by a regulator.
This can be as simple as a boolean matrix, but sign and magnitude will affect calculation of regulator activity.

	A gold standard connectivity matrix [G x K] which links the genes G to the regulators K.
This matrix should have a zero where a gene is not regulated by a regulator.
It should have a non-zero value where a gene is known to be regulated by a regulator.
It will be interpreted as a boolean matrix, so sign and magnitude of non-zeros is not considered.

Also important is sample metadata. This is necessary if there is a time element to the samples,
or if there is some grouping criteria. If time series data is included, there are two supported formats for this data.
If time series data is not included, any metadata structure is valid.

The first format is branching and has 5 columns:

isTs | is1stLast | prevCol | del.t | condName
===
TRUE | f | NA | NA | A-1
TRUE | m | A-1 | 15 | A-2
TRUE | l | A-2 | 15 | A-3

	isTs is TRUE or FALSE and indicates if this sample is in a time series.

	is1stLast is f if this sample is the first sample in a time series.
It is m if this sample is a middle sample in a time series.
It is l if this sample is the last sample in a time series.
It is NA if this sample is not in a time series

	prevCol is the name of the sample which comes before this sample

	del.t is the time elapsed since the sample which comes before this sample

	condName is the name of this sample. It must match the sample name in the expression data.

The second format is nonbranching and has 3 columns:

condName | strain | time
========================
 A-1 | A | 0
 A-2 | A | 15
 A-3 | A | 30

	condName is the name of this sample. It must match the sample name in the expression data.

	strain is the name of the sample group.

	time is the absolute time elapsed during this sample group’s experiment.

Finally, gene metadata can also be provided. This is currently used to restrict modeling to just some genes.

Workflow setup

The inferelator is implemented on a workflow model. The first step is to create a workflow object.
At this stage, the type of regression model and workflow must be chosen:

from inferelator import inferelator_workflow

worker = inferelator_workflow(regression="bbsr", workflow="tfa")

	Valid options for regression include “bbsr”, “elastic-net”, and “amusr”.

	Valid options for workflow include “tfa”, “single-cell”, and “multitask”.

The next step is to set the location of input data files:

worker.set_file_paths(input_dir=".",
 output_dir="./output_inferelator",
 expression_matrix_file="expression.tsv",
 tf_names_file="regulators.tsv",
 meta_data_file="meta_data.tsv",
 priors_file="priors.tsv",
 gold_standard_file="gold_standard.tsv")

The input directory will be added to all file locations which are not absolute paths.
The output directory will be created if it does not exist.

Finally, run parameters should be set:

worker.set_run_parameters(num_bootstraps=5, random_seed=42)

This worker can now be run with:

network_result = worker.run()

Multitask Workflows

The inferelator supports inferring networks from multiple separate “tasks” at the same time.
Several modeling options exist, but all must use the multitask workflow:

worker = inferelator_workflow(regression="amusr", workflow="multitask")

	amusr regression is a multitask learning model that shares information during regression.

	bbsr-by-task regression learns separate networks using the BBSR model,
and then aggregates them into a joint network.

	elasticnet-by-task regression learns separate networks using the Elastic Net model,
and then aggregates them into a joint network.

After creating a workflow, only the input, output and gold standard file location should be provided directly:

worker.set_file_paths(input_dir=".", output_dir="./output_network", gold_standard_file="gold_standard.tsv.gz")

Other information should be provided to each separate task.
These can be created by calling the .create_task() function.
This function returns a task reference which can be used to set additional task properties:

task_1 = worker.create_task(task_name="Bsubtilis_1",
 input_dir=".",
 tf_names_file='tf_names.tsv',
 meta_data_file='GSE67023_meta_data.tsv',
 priors_file='gold_standard.tsv.gz',
 workflow_type="tfa")
task_1.set_expression_file(tsv='GSE67023_expression.tsv.gz')

task_2 = worker.create_task(task_name="Bsubtilis_2",
 input_dir=".",
 tf_names_file='tf_names.tsv',
 meta_data_file='meta_data.tsv',
 priors_file='gold_standard.tsv.gz',
 workflow_type="tfa")
task_2.set_expression_file(tsv='expression.tsv.gz')

Additional parameters can be set on the main workflow.
Task references made with .create_task() are automatically included when the workflow is started.
The workflow can then be started with .run():

worker.set_run_parameters(num_bootstraps=5, random_seed=42)
worker.run()

Parallelization

The inferelator supports three major parallelization options. These can be set using a controller class.
Calling the multiprocessing environment should be protected with the if __name__ == '__main__' pragma.
This is necessary to prevent a specific error in creating new processes that occurs when os.fork() is unavailable.
Multiprocessing options should be set prior to creating and running workflows.
It is not necessary to set multiprocessing more then once per session:

from inferelator import MPControl

if __name__ == '__main__':
 MPControl.set_multiprocess_engine("multiprocessing")
 MPControl.client.processes = 12
 MPControl.connect()

	multiprocessing engine uses the pathos implementation of python’s multiprocessing.
It creates multiple processes on one computer.

	local engine uses no multiprocessing and runs from a single process.
In some cases, python libraries (like numpy) may use multiple threads within this process.

	dask-cluster engine uses the dask scheduler-worker library in combination with the dask_jobqueue
cluster-management library to manage processes through a job scheduler. Currently, only SLURM is supported.
Correctly configuring this for your cluster may be a challenge.

Examples

Example scripts are currently available on GitHub [https://github.com/flatironinstitute/inferelator/tree/master/examples].

References

	R. Bonneau et al., “The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo,” Genome Biology, vol. 7, p. R36, May 2006. [https://doi.org/10.1186/gb-2006-7-5-r36]

	A. Madar, A. Greenfield, H. Ostrer, E. Vanden-Eijnden, and R. Bonneau, “The inferelator 2.0: A scalable framework for reconstruction of dynamic regulatory network models,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sep. 2009. [https://ieeexplore.ieee.org/document/5334018]

	A. Madar, A. Greenfield, E. Vanden-Eijnden, and R. Bonneau, “DREAM3: Network Inference Using Dynamic Context Likelihood of Relatedness and the Inferelator,” PLOS ONE, vol. 5, no. 3, p. e9803, Mar. 2010. [https://doi.org/10.1371/journal.pone.0009803]

	A. Greenfield, A. Madar, H. Ostrer, and R. Bonneau, “DREAM4: Combining Genetic and Dynamic Information to Identify Biological Networks and Dynamical Models,” PLOS ONE, vol. 5, no. 10, p. e13397, Oct. 2010. [https://doi.org/10.1371/journal.pone.0013397]

	M. Ciofani et al., “A Validated Regulatory Network for Th17 Cell Specification,” Cell, vol. 151, no. 2, pp. 289–303, Oct. 2012. [https://doi.org/10.1016/j.cell.2012.09.016]

	A. Greenfield, C. Hafemeister, and R. Bonneau, “Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks,” Bioinformatics, vol. 29, no. 8, pp. 1060–1067, Apr. 2013. [https://doi.org/10.1093/bioinformatics/btt099]

	M. L. Arrieta‐Ortiz et al., “An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network,” Molecular Systems Biology, vol. 11, no. 11, p. 839, Nov. 2015. [https://doi.org/10.15252/msb.20156236]

	O. Wilkins et al., “EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in the Response to Water Deficit, High Temperature, and Agricultural Environments,” The Plant Cell, vol. 28, no. 10, pp. 2365–2384, Oct. 2016. [https://doi.org/10.1105/tpc.16.00158]

	K. Tchourine, C. Vogel, and R. Bonneau, “Condition-Specific Modeling of Biophysical Parameters Advances Inference of Regulatory Networks,” Cell Reports, vol. 23, no. 2, pp. 376–388, Apr. 2018. [https://doi.org/10.1016/j.celrep.2018.03.048]

	D. M. Castro, N. R. de Veaux, E. R. Miraldi, and R. Bonneau, “Multi-study inference of regulatory networks for more accurate models of gene regulation,” PLOS Computational Biology, vol. 15, no. 1, p. e1006591, Jan. 2019. [https://doi.org/10.1371/journal.pcbi.1006591]

	E. R. Miraldi et al., “Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells,” Genome Res., vol. 29, no. 3, pp. 449–463, Mar. 2019. [http://www.genome.org/cgi/doi/10.1101/gr.238253.118]

	C. A. Jackson, D. M. Castro, G.-A. Saldi, R. Bonneau, and D. Gresham, “Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments,” eLife, vol. 9, p. e51254, Jan. 2020. [https://doi.org/10.7554/eLife.51254]

	C. S. Gibbs, C. A. Jackson, G.-A. Saldi, A. Tjärnberg, A. Shah, et al. 2022. “High Performance Single-Cell Gene Regulatory Network Inference at Scale: The Inferelator 3.0.” Bioinformatics , February. <https://doi.org/10.1093/bioinformatics/btac117>`

Change Log

Inferelator v0.6.1 January 3, 2023

New Functionality:

	Extended support for mRNA velocity & decay calculations

	Added new experimental TFA modules

Code Refactoring:

	Workflow, ResultProcessor, and InferelatorData restructured for readability and clearer commenting

Bug Fixes:

	Slicing individual gene data returns numpy vector instead of anndata view

	Corrected several deprecated pandas calls to eliminate FutureWarnings

Inferelator v0.6.0 September 14, 2022

New Functionality:

	Support for grouping arbitrary genes from multiple tasks into learning groups

	Workflow to learn homology groups together

	Workflow to explicitly incorporate velocity and decay into learning

	Added support for batching parallelization calls to reduce overhead when data is relatively small

Code Refactoring:

	Refactored multi-task learning to parameterize tfs and genes for each task

	Refactored parallelization around joblib & dask

	Removed pathos and replaced with joblib

	Optimized StARS-LASSO by replacing standalone LASSO with lasso_path

Bug Fixes:

	Fixed several messages to be more informative

	use_no_prior is appropriately applied in multitask learning

Inferelator v0.5.8 February 23, 2022

Bug Fixes:

	Corrected combining multi-task gene and tf labels

Inferelator v0.5.7 September 29, 2021

New Functionality:

	Added support for numba acceleration of AMuSR with .set_run_parameters(use_numba=True) (PR #46)

Code Refactoring:

	Updated example scripts

	Removed deprecated KVS multiprocessing and associated code

Bug Fixes:

	Gene labels are included as the first column of the produced confidences TSV file by default

	Matplotlib backend selection checks for non-interactive mode

Inferelator v0.5.6 August 16, 2021

New Functionality:

	Added code to randomly generate noise in prior with .set_shuffle_parameters(add_prior_noise=None)

	Added in-workflow benchmarks for CellOracle and pySCENIC

Code Refactoring:

	Minor changes to matplotlib interface

	Improved testing for multitask workflows

	Improved error messaging around prior and gold standard

	Switch from Travis.ci to GitHub Actions for continuous integration

Inferelator v0.5.5 April 29, 2021

New Functionality:

	Added .set_regression_parameters(tol=None) to parameterize tolerances in AMuSR regression

Code Refactoring:

	Profiled and optimized AMuSR code

Inferelator v0.5.4 April 23, 2021

Bug Fixes:

	Fixed bug in multitask prior processing

	Fixed bug in dask cluster setup

	Suppressed stdout warning when output network MCC is not finite

Inferelator v0.5.3 March 22, 2021

New Functionality:

	Added the ability to control threads-per-process when using dask

Bug Fixes:

	Fixed bug in result dataframe that failed to create columns in older versions of pandas

Inferelator v0.5.2 January 29, 2021

New Functionality:

	Added flag .set_shuffle_parameters(make_data_noise=True) to model on randomly generated noise

	Output TSV files are gzipped by default

	Added .set_output_file_names() as interface to change output file names

	Added .set_regression_parameters(lambda_Bs=None, lambda_Ss=None, heuristic_Cs=None) for AMuSR regression

Bug Fixes:

	Fixed bug(s) with dask cluster scaling

	Fixed float precision bug in mutual information

Code Refactoring:

	Added additional tests

	Refactored AMuSR code

Inferelator v0.5.1 November 22, 2020

Bug Fixes:

	Fixed bug that prevented PDF summary figure generation

Inferelator v0.5.0 November 14, 2020

New Functionality:

	Changed output to include additional performance metrics (Matthews Correlation Coefficient and F1)

Bug Fixes:

	Fixed several bugs around data loading

	Fixed several float tolerance bugs

Code Refactoring:

	Added additional tests

	Improved dask cluster configurations

	Improved documentation

Inferelator v0.4.1 August 4, 2020

New Functionality:

	Added a regression module based on stability selection

	Added a regression module that can apply any scikit-learn regression model

Bug Fixes:

	Fixed row labels in matrix outputs

Code Refactoring:

	Added additional tests

Inferelator v0.4.0 April 7, 2020

New Functionality:

	Support for sparse data structures

	Support for h5 and mtx input files

	Added several flags that can change behavior of BBSR (clr_only, ols_only)

Bug Fixes:

	Changed behavior of precision-recall to average the precision of ties instead of randomly ordering

Code Refactoring:

	Refactored the core data structures from pandas to AnnData backed by numpy or scipy arrays

	Data matrices are loaded and maintained as OBS x VAR throughout the workflow.
Data files which are in GENE x SAMPLE orientation can be loaded if
.set_file_properties(expression_matrix_columns_are_genes=False) is set.

	Use sparse_dot_mkl with the intel Math Kernel Library to handle sparse (dot) dense multiplication

	Improved memory usage

	Added unit tests for dask-related functionality

	Changed a number of error messages to improve clarity

Inferelator v0.3.2 December 19, 2019

New Functionality:

	Improved error messages associated with misaligned data structures

	Added example script and data for the multitask workflows

Bug Fixes:

	Corrected several bugs when using the CrossValidationManager on multitask workflows

Code Refactoring:

	This is the final release which will be fully py2.7 compatible

	Additional unit testing

Inferelator v0.3.1 December 10, 2019

New Functionality:

	Created a CrossValidationManager which handles parameter searches on workflows.
Replaces the single_cell_cv_workflow which did not generalize well.

	Workflow parameters are now set through functional setters like set_file_paths(),
instead of through setting (cryptic) instance variables

	Calculated transcription factor activities can be saved to a file prior to inference.
This is set with workflow.set_tfa(tfa_output_file = “Filename.tsv”)

Bug Fixes:

	Many

Code Refactoring:

	Rebuilt the multitask workflow with TaskData objects instead managing data in many lists of things.

Inferelator v0.3.0 July 30, 2019

New Functionality:

	Created a MultiprocessingManger for abstract control of multiprocessing.

	Implemented a scheduler-worker model through the dask package for cluster computing.

	Implemented a map model through the pathos implementation of multiprocessing for local computing.

	Example scripts and datasets are now provided

Bug Fixes:

	Many

Code Refactoring:

	Rebuilt the core workflow

	Workflow assembly by inheritance is managed with a factory function

	Refactored regression to act as a mapped function for easier multiprocessing

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 inferelator	

 	
 	
 inferelator.amusr_workflow	

 	
 	
 inferelator.crossvalidation_workflow	

 	
 	
 inferelator.single_cell_workflow	

 	
 	
 inferelator.tfa_workflow	

 	
 	
 inferelator.workflow	

Index

 _
 | A
 | B
 | C
 | E
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | W

_

 	
 	__init__() (inferelator.crossvalidation_workflow.CrossValidationManager method)

A

 	
 	add_gridsearch_parameter() (inferelator.crossvalidation_workflow.CrossValidationManager method)

 	add_grouping_dropin() (inferelator.crossvalidation_workflow.CrossValidationManager method)

 	add_grouping_dropout() (inferelator.crossvalidation_workflow.CrossValidationManager method)

 	
 	add_preprocess_step() (inferelator.single_cell_workflow.SingleCellWorkflow method)

 	add_size_subsampling() (inferelator.crossvalidation_workflow.CrossValidationManager method)

 	AMUSRRegressionWorkflowMixin (class in inferelator.regression.amusr_regression)

 	append_to_path() (inferelator.workflow.WorkflowBaseLoader method)

B

 	
 	BBSRRegressionWorkflowMixin (class in inferelator.regression.bbsr_python)

 	
 	betas_sign (inferelator.postprocessing.InferelatorResults attribute)

 	betas_stack (inferelator.postprocessing.InferelatorResults attribute)

C

 	
 	combined_confidences (inferelator.postprocessing.InferelatorResults attribute)

 	
 	create_task() (inferelator.amusr_workflow.MultitaskLearningWorkflow method)

 	CrossValidationManager (class in inferelator.crossvalidation_workflow)

E

 	
 	ElasticNetWorkflowMixin (class in inferelator.regression.elasticnet_python)

I

 	
 	inferelator.amusr_workflow (module)

 	inferelator.crossvalidation_workflow (module)

 	inferelator.single_cell_workflow (module)

 	
 	inferelator.tfa_workflow (module)

 	inferelator.workflow (module)

 	inferelator_workflow() (in module inferelator.workflow)

 	InferelatorResults (class in inferelator.postprocessing)

M

 	
 	MultitaskLearningWorkflow (class in inferelator.amusr_workflow)

N

 	
 	name (inferelator.postprocessing.InferelatorResults attribute)

 	
 	network (inferelator.postprocessing.InferelatorResults attribute)

P

 	
 	print_file_loading_arguments() (inferelator.workflow.WorkflowBaseLoader method)

R

 	
 	run() (inferelator.single_cell_workflow.SingleCellWorkflow method)

 	(inferelator.tfa_workflow.TFAWorkFlow method)

 	(inferelator.workflow.WorkflowBase method)

S

 	
 	set_count_minimum() (inferelator.single_cell_workflow.SingleCellWorkflow method)

 	set_crossvalidation_parameters() (inferelator.workflow.WorkflowBase method)

 	set_design_settings() (inferelator.tfa_workflow.TFAWorkFlow method)

 	set_expression_file() (inferelator.workflow.WorkflowBaseLoader method)

 	set_file_loading_arguments() (inferelator.workflow.WorkflowBaseLoader method)

 	set_file_paths() (inferelator.workflow.WorkflowBaseLoader method)

 	set_file_properties() (inferelator.workflow.WorkflowBaseLoader method)

 	set_network_data_flags() (inferelator.workflow.WorkflowBaseLoader method)

 	set_output_file_names() (inferelator.workflow.WorkflowBase static method)

 	set_postprocessing_parameters() (inferelator.workflow.WorkflowBase method)

 	set_regression_parameters() (inferelator.regression.amusr_regression.AMUSRRegressionWorkflowMixin method)

 	(inferelator.regression.bbsr_python.BBSRRegressionWorkflowMixin method)

 	(inferelator.regression.elasticnet_python.ElasticNetWorkflowMixin method)

 	(inferelator.regression.sklearn_regression.SKLearnWorkflowMixin method)

 	(inferelator.regression.stability_selection.StARSWorkflowMixin method)

 	
 	set_run_parameters() (inferelator.workflow.WorkflowBase method)

 	set_shuffle_parameters() (inferelator.workflow.WorkflowBase method)

 	set_task_filters() (inferelator.amusr_workflow.MultitaskLearningWorkflow method)

 	set_tfa() (inferelator.tfa_workflow.TFAWorkFlow method)

 	SingleCellWorkflow (class in inferelator.single_cell_workflow)

 	SKLearnWorkflowMixin (class in inferelator.regression.sklearn_regression)

 	StARSWorkflowMixin (class in inferelator.regression.stability_selection)

T

 	
 	tasks (inferelator.postprocessing.InferelatorResults attribute)

 	
 	TFAWorkFlow (class in inferelator.tfa_workflow)

W

 	
 	WorkflowBase (class in inferelator.workflow)

 	
 	WorkflowBaseLoader (class in inferelator.workflow)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Inferelator 3.0

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

